ENVIRONMENTAL REGULATION OF HUDRAULIC FRACTURING IN SHALE FORMATIONS

Deola Ali – University of Houston Law Center

What is Hydraulic Fracturing?

History of Hydraulic Fracturing

- 1903: first tested in Mt. Airy Quarry, NC to mine granite
- 1948: first used commercially
- 1974: Safe Drinking Water Act (SDWA) enacted. Amended 1986 and 1996 (Fracing not targeted)
- 1981: Texas Oilman George Mitchell starts gas fracing of shale (Barnett Shale)
- 1990s: Better know-how and high gas prices pushe Shale fracing to other regions

History of Hydraulic Fracturing

- 1997: Legal Environmental Assistance Foundation (LEAF) v EPA (118 F.3d 1467 (11th Cir. 1997)(hydraulic fracturing should be regulated under SDWA)
- 2004: EPA report on the use of hydraulic fracturing in coal bed methane operations finds no effect on groundwater (raised concerns on diesel).
- 2005: Energy Policy Act of 2005 Exempts Hydraulic Fracturing under SDWA (except diesel)

History of Hydraulic Fracturing

- 2007: Gas well in Bainbridge, Ohio causes explosion; incident blamed on hydraulic fracturing. Similar events reported in other gas producing states – Penn, Colorado.
- 2008: Outside interest groups expand efforts to attack hydraulic fracturing in mid-Atlantic region (Marcellus Shale).
- **2010:** Movie (Gasland) released to rave reviews (Oscar nominated)
- 2010: Congress commissions EPA study (prelim. result expected in 2012)

If Hydraulic Fracturing Has Been Around For 100 Years, Why The New Concerns?

"CONVENTIONAL" VS. "UNCONVENTIONAL"

Conventional Reservoirs

- high quality rock properties (porosity and permeability),
- No need for artificial stimulation (fracturing)
- Wells typically drain hundreds/thousands of acres, typically geologically driven plays with higher risk.

Unconventional Reservoirs

- Poor Rock Properties (low porosity and permeability)
- Need fracturing
- Drain poorly (10-40 acres typical)
- Horizontal wells generally improve drainage (but high production decline 70% 80% in year 1

CONVENTIONAL" VS. "UNCONVENTIONAL" Porosity and Permeability

Shale is Everywhere -- Almost

Environmental Concerns

- Fracing Fluid Composition
- **Surface Concerns**
- Underground Water Safety
- Nuisance Issues
- Water Withdrawal

Fracing Fluid Composition

- Issues
 - Nondisclosure
 - Hazardous content (Acids, Biocides, Surfactants)
- Regulation
 - State Mandatory Disclosure Laws (Penn lists online)
 - Reflexive Disclosure by Industry (FracFocus website)
 - Federal (MSDS—limited)

Surface Concerns

- Noise
 - About a month (drill + frack)
- Road Use
 - Wear and tear
 - Dust and auto damage
- Pad size
 - Trucks need space
 - **■** Erosion/landslides
 - Scarring (aesthetic damage)
- Transient Workers
- Multiple Time, Place,Manner Regulations at theMunicipal Level

Surface Concerns

- Run Off Water
- Frac Fluid Spills
 - Blowouts
- **■** Regulations
 - Multiple local level regulation
 - Private action civil suits
 - Organized citizen groups providing visibility

Underground Water Safety

- Issues
 - **■** Gas migration into aquifers (Gasland)
 - U.S. v. Range Resources (N.D. Tex 2011)
 - **■** Diesel?
- Regulations
 - State Level Controls on well casing integrity (zonal isolation)
 - SDWA (UIC—not applicable, attempted legislative amendments failed)
 - DOI considering regulation on national parks

<u>Underground Water Safety</u>

Water Withdrawal

■ Issues: Fracing is very water intensive

Shale Gas Play	Volume of Drilling Water per Well (gal)	Volume of Fracturing Water per Well (gal)	Total Volumes of Water per Well (gal)
Barnett	400,000	2,300,000	2,700,000
Fayetteville	60,000°	2,900,000	3,060,000
Haynesville	1,000,000	2,700,000	3,700,000
Marcellus	80,000*	3,800,000	3,880,000

- Regulations
 - Water withdrawal permits (e.g. Penn)
 - Reflexive solution through increased recycling

Conclusions

- Increasing pressure to regulate at Federal level (initial result of EPA study in 2012 will be instructive)
- Push back by some States (Texas)
- Industry becoming more accountable and self-regulating
- Active citizen groups won't leave fracing alone and will be forcing a lot of change